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Background: We describe a methodology that may be used to write uniform and 
universally accepted  occupational vision standards. A simple image 
discrimination model is first calibrated using stimuli representative of airframe 
and powerplant cracks. It is then used to predict the visibility of simulated cracks 
of different lengths and widths. Visual acuity declines are simulated using a 
gaussian blur function on the crack images.  Crack width is shown to be a salient 
cue to crack detection.  Using this modeling technique we show when acuity 
declines begin to significantly effect performance. Future research will validate 
model predictions with human psychophysical data. 

INTRODUCTION 
In a recent review of the occupational vision 
standards literature, Beard et al. (2002) 
found that the majority of occupational 
vision standards are not empirically 
substantiated, and appear to be arbitrarily 
decided. A few standards have been 
empirically defined.  For example, to define 
a visual acuity standard for police officers, 
Sheedy (1980) measured the size and 
working distance of the critical visual details 
for a representative task.  Visual acuity 
standards have also been defined for police 
officers (Good, 1987; 1996), basket weavers 
(Good et al., 1996) and firefighters (Padget, 
1989) using blurring lenses to reduce acuity 
while measuring performance on a job 
relevant task. Finally, Mertens et al. (2000) 
measured performance in color weak 
individuals on simulated ATC tasks to set an 
empirically defined color vision standard. 

Currently no general standard exists in the 
aviation industry for the visual qualifications 
of maintenance  inspectors.  Some aircraft 
maintenance facilities have developed their 
own vision qualification programs, 
highlighting the need for a uniform and 
universally accepted set of vision standards 
that would apply to all aircraft non­
destructive inspection and testing 

(NDI/NDT) personnel. It is difficult, if not 
impossible, to eliminate human error in the 
process of inspection. Therefore 
interventions must be developed to reduce 
these errors and make the process more 
error-tolerant. Since visual inspection 
represents 80% of all aviation maintenance 
inspection tasks (Goranson & Rogers, 
1983), one mitigation strategy is to define 
vision standards for this vision-intensive, 
safety-critical occupation. 

In this paper we apply a novel methodology 
toward defining an empirically based visual 
acuity standard for a representative task 
performed by aircraft maintenance personnel 
who do NDI/NDT and visual inspection. 
Computational models of human vision can 
make an important contribution to 
occupational vision requirements. One 
application of these models has been as 
image quality metrics, an application in 
which there are two images, an original 
image and a reconstructed version following 
image compression.  The model predicts 
discriminability of the two images and thus 
the visibility of the compression artifacts 
(Watson, 1983).  These discriminability 
models have also been used to predict object 
detection in a complex background, such as 
camouflaged military tanks (Rohaly et al., 
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1997) and simulated aircraft on a runway 
(Ahumada & Beard, 1997).  

To obtain an estimate of a visual acuity 
standard using image discrimination models, 
we follow a multi-step process.  First, we 
calibrate the model for stimuli representative 
of airframe and powerplant cracks that are 
clear and blurred. We use a subset of the 
standard Modelfest images, whose contrast 
thresholds have been measure in a number 
of laboratories to calibrate the model. 
Second, we use the calibrated model to 
predict the visibility of simulated cracks of 
different lengths and widths as a function of 
blur, simulating reduced visual acuity in the 
image, rather than with blurring lenses, so 
that the image characteristics are exactly 
known. This provides an estimate of how 
much contrast sensitivity is lost by blur, so 
that if the tolerable loss in contrast 
sensitivity can be specified, the 
corresponding visual acuity is then 
specified. In support of the model’s 
accuracy, we plan to obtain human 
psychophysical measurements to validate 
the simulated crack predictions.  In addition, 
we will use the model to compare the 
simulated crack predictions to predictions 
for actual crack images in a natural aircraft 
scene. And finally, we will validate the 
natural scene predictions with human in the 
loop data. In this paper we report the results 
for the first two steps of this process. 

The purpose of this paper is threefold. (1) 
To introduce a new methodology for 
determining occupational vision 
requirements.  (2) To present the technique 
used for model calibration.  (3) To run the 
model on simulated crack images over a 
range of widths and lengths at different 
levels of visual acuity. 

METHODS & RESULTS 

A Representative Defect 

Aircraft inspection is a complex process, 
requiring many tasks, skills, and procedures. 
Its main purpose is the detection of 
discontinuities such as cracks1 within the 
airframe and powerplant regions of the 
aircraft. Because these cracks may be very 
small and of low contrast, good visual acuity 
is likely to be involved in their detection. 
Visual acuity refers to a measure of spatial 
resolution of a person’s vision for a high 
contrast, static image. After consulting with 
domain experts, we chose crack detection as 
the representative task in which to model.  

A Simple Model 

Blurred image 
with crack 
removed 

Blurred image 
with crack 

Figure 1. Schematic of an image detection 
model 

Figure one’s upper image is the background 
image and the lower image is the 
background-plus-defect image.  The two 
input images (contrast images) enter the 
visual system, where they are filtered by a 
difference of gaussian blurring function. 
The difference of the images is calculated 
after which two standard deviations are 
computed; the first represents the root mean 
square error of the background image, which 

1  A crack may be defined as “A planar breach in 
continuity in a material” (Hellier, 2001). They are 
typically caused by two surfaces being overlaid at a 
boundary.  
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is assumed to be the masker and the second 
is the standard deviation of the defect pixel 
contrast. This generates a masking curve in 
which the masking contrast is determined by 

2c . The product of these outputs represents 
the predicted sensitivity or the just 
noticeable difference of the crack defect. 

Image discrimination models predict the 
difference in visibility between two similar 
images.  The models take two images as 
input, and output a prediction of the number 
of Just Noticeable Differences (JNDs) 
between them. In this version of the model, 
one luminance image is considered to be a 
blurred version of the background image and 
the other is the blurred background-with-
crack image. These images are filtered using 
the Contrast Sensitivity Function (CSF) in 
order to normalize sensitivity.  The model 
takes the contrast energy in the target and 
adjusts it by the background variance. 

Model Calibration 
To provide a common data set for the 
development of models of contrast target 
detection, the Modelfest project developed a 
set of 44 images, most of which are various 
grating patches (the entire set of 44 
calibration images can be obtained from 
http://vision.arc.nasa.gov/modelfest). To 
calibrate our model, we chose seven of the 
44 images because of their physical 
similarity to aircraft crack defects.  These 
seven images are shown in Figure 2. 

Earlier predictions of real world stimuli 
(Rohaly et al., 1997; Ahumada & Beard, 
1997) have assumed a contrast sensitivity 
function (CSF) with a sinusoidal grating 
threshold of 1%. To fit the average (n=16) 
Modelfest thresholds for the stimuli in 
Figure 2 we need to use a best grating 
threshold of 0.5%. We tried Minkowski 
summation exponents of 2 and 4 and found 
that the best fit for these seven stimuli was a 

summation exponent of 2 (Euclidean 
Distance). When the entire set of 44 images 
was run through the model, the best fitting 
exponent was 4 (probability summation). 
This is probably because many of the other 
images in the set of 44 contained extended, 
high spatial frequency features whereas the 
seven images used here either were localized 
within a small spatial area or contained only 
extended low frequency energy. 

Figure 2. Stimuli used to calibrate the contrast discrimination 
model.  The leftmost 4 images are Gaussians with decreasing 
standard deviations, the fifth through seventh images are an 
edge, line, and dipole respectively. 

Simulating Visual Acuity Decline 

Although the shape of the human blur 
function differs between individuals and 
changes for different optical conditions, it 
can be approximated by a Gaussian spread 
function. The model has a difference of 
Gaussians contrast sensitivity function with 
a center Gaussian spread of 2 min.  To 
simulate different levels of visual acuity, we 
blur the image with a Gaussian and then 
report the acuity as the ratio of the effective 
center spread to the original model value. 
Thus we are assuming that the model has 
20/20 vision. For example, if the blur has a 
spread of 2 min, the effective center 
Gaussian spread will be root 2 times 2 min 
(Pythagorean rule) so that the effective 
acuity will be 20/28. 
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Model Predictions 

We next predicted the visibility of a set of 
simulated cracks as a function of blur 
(simulating visual acuity declines) for a 
range of lengths and widths. The widths 
were 0.5, 1, 2, 4, and 8 min.  The lengths 
were the widths times 1, 2, 4, 8, and 16. 
Figure 3 shows how the threshold contrast 
for each image varied as a function of blur 
relative to the threshold for the unblurred 
image.  The top curve is the result for the 
pinpoint crack (e.g., 0.5 min x 0.5 min). 
The threshold for this image is more 
affected by blur than the threshold for any 
other image.  The figure shows that if the 
allowed sensitivity degradation were 6 dB (a 
factor of 2 in contrast), the allowable acuity 
degradation would be about 20/60. 

Figure 3. Increments in contrast thresholds in dB  as a 
function of visual acuity decline for the range of crack 
length and widths described in the text.  The top curve is 
for the smallest crack  (0.5 min by 0.5 min), the bottom 
curve is for the biggest crack (8 min by 128 min). 

DISCUSSION 

The first aim of this paper was to describe a 
methodology that may be used to generate 
empirically based occupational vision 
standards. It does not provide a standard, 
but it converts the problem to specifying a 
desired physical limitation in performance. 
Here we use this technique to help define the 

spatial vision requirements for aircraft 
NDI/NDT personnel using simulated crack 
images. These modeling results will help 
define the parameters tested in the human 
psychophysical experiments. We next need 
to validate that line detection predicts actual 
aircraft crack detection. 

Vision is a fundamental component of 
effective aircraft maintenance inspection. All 
the same, so too are other cognitive factors 
such as attention, memory, and experience. 
Inspectors are knowledgeable about 
individual components as well as the overall 
aircraft being inspected, thus they possess 
the background to properly locate, identify, 
and evaluate aircraft defects. Therefore, 
although vision is a critical component in 
inspection, other factors weigh in heavily on 
the naturalistic task. 
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